Original Contribution

3-D TRANSCRANIAL ULTRASOUND IMAGING WITH BILATERAL PHASE ABERRATION CORRECTION OF MULTIPLE ISOPLANATIC PATCHES: A PILOT HUMAN STUDY WITH MICROBUBBLE CONTRAST ENHANCEMENT

Brooks D. Lindsey, Heather A. Nicoletto, Ellen R. Bennett, Daniel T. Laskowitz, and Stephen W. Smith

*Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; †Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA; and ‡Division of Neurology, Duke University Medical Center, Durham, North Carolina, USA

(Received 22 May 2013; revised 20 August 2013; in final form 1 September 2013)

Abstract—With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on health care outcomes and costs. Although clinical examination and standard computed tomography alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well suited to the task of examining blood flow dynamics in real time and may allow for localization of a clot. A prototype bilateral 3-D ultrasound imaging system using two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in five healthy volunteers with Definity microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3-D color flow mode. The number of color flow voxels above a common threshold increased as a result of aberration correction in five of five subjects, with a mean increase of 33.9%. The percentage of large arteries visualized by 3-D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction. (E-mail: brookslindsey@gmail.com) © 2013 World Federation for Ultrasound in Medicine & Biology.

Key Words: Transcranial, Phase aberration, 3-D ultrasound, Contrast enhanced.

INTRODUCTION

Stroke and cerebrovascular disease represent the second-leading cause of death globally (World Health Organization 2011) and constitute 17% of overall national health spending in the United States (Heidenreich et al. 2011). Approximately 87% of strokes are ischemic strokes (Roger et al. 2011), in which patients’ functional outcomes may be improved and recovery times reduced by intravenous administration of a thrombolytic agent such as recombinant tissue plasminogen activator (tPA) (Hacke et al. 1995).

Ischemic strokes may be treated with thrombolytic agents only within the first 4.5 h of symptom onset, with earlier times associated with more favorable outcomes (Davis and Donnan 2009; Hacke et al. 2008).

Although computed tomography (CT) scans are commonly used to exclude patients with hemorrhages from thrombolytic treatment, clinical examination and standard CT alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke (Sims et al. 2005). Ultrasound imaging is well suited to the task of examining blood flow dynamics in real time and may allow for localization of the ischemic region in a large-artery stroke (Kern et al. 2011).

Real-time 2-D ultrasound imaging has been found to be a portable technology for diagnosing stroke in the field (Bowman 2010; Chenaitia et al. 2011; Holscher et al. 2008; Holscher et al. 2008; Hoyer et al. 2010; Schlachetzki et al. 2012; Wilson et al. 2011). In the clinical setting, investigators have worked to standardize scanning procedures for transcranial ultrasound with color flow (Nedelmann et al. 2009). Three-dimensional ultrasound has been cited as a potentially faster and clinically acceptable alternative to X-ray for examining blood flow in...
intracranial collateral arteries (Wessels et al. 2004). Ultrasound may also have value as a monitoring tool to avoid repeated CT scans, each of which requires transportation of a critically ill patient, exposure to ionizing radiation and increased cost relative to ultrasound (Alexandrov et al. 2004; Becker et al. 2012).

The frame rates and spatial sampling necessary for real-time 3-D ultrasound imaging are enabled by the use of a matrix array probe and parallel receive processing (Smith et al. 1991; von Ramm et al. 1991). This approach carries inherent reductions in system performance relative to 2-D ultrasound: (i) Sensitivity is reduced because of electrical impedance mismatch between the element of a 2-D array and the cable it drives. (ii) Spatial resolution and sensitivity are reduced because of weak focusing of a transmit beam from which multiple receive beams are formed simultaneously.

In addition to these technical challenges associated with 3-D ultrasound imaging, the effects of the skull also limit transcranial ultrasound imaging. Aaslid et al. (1982) first reported the presence of a region of the human temporal bone having decreased attenuation. Within this acoustic window, attenuation of sound waves in the skull is approximately 2.8 dB/cm/MHz (White and Stevenson 1978), whereas outside the window, it may vary from 30 to 70 dB/cm/MHz (White and Stevenson 1978). In addition, recent studies have examined other deleterious effects of ultrasound propagation through the skull, including mode conversion and total internal reflection (Clement et al. 2004; Maciak et al. 2009; Vignon et al. 2010; White et al. 2006), non-linear propagation (Pinton et al., 2011) and refraction (Smith et al. 1986). Researchers have also presented promising results using microbubble-based parametric imaging approaches to localize regions of abnormal perfusion (Holscher et al. 2005; Kern et al. 2011; Meyer-Wiethe et al. 2009; Seidel et al. 2000).

Phase aberration correction

Perhaps the most commonly addressed skull-induced effect is aberration, which reduces spatial and contrast resolution caused by a mismatch between the velocity of a longitudinal wave in the spatially inhomogeneous skull \(c_S \approx 2327–2560 \text{ m/s} \) (Fry and Barger 1978; Pichardo et al. 2011) and the soft tissue velocity assumed by the scanner in beamforming \(c_B = 1540 \text{ m/s} \). In the near-field phase screen model (Fig. 1), the wavefront aberration in the skull is modeled as a set of time delay adjustments at each element

\[
\Delta t(x, y) = \Delta z(x, y) \left(\frac{1}{c_S} - \frac{1}{c_B} \right)
\]

where \(\Delta z \) is the thickness variation in \(x \) and \(y \), and \(\Delta t \) is the resulting arrival time variation.

If the spatial variations of the skull can be measured using either backscattered echoes or a transmitted beacon wave, then the scanner’s transmit and receive time delays might be corrected by adding \(-\Delta t\) to cancel the appropriate \(\Delta t \) at each \((x, y) \) position in eqn (1). This tightens the focus that had been broadened by propagation through the skull. Miller-Jones (1980) measured arrival time using a contralateral active source as a coherent, high-signal-to-noise ratio (SNR) correction beacon, an approach that Vignon et al. combined with inverse filtering to compensate for the various frequency-dependent effects of the skull and allow for the formation of a tight focus within the skull without the presence of a beacon inside the skull (Aubry et al. 2001; Tanter et al. 2001; Vignon et al. 2006). Our own group reported 3-D correction of *in vivo* aberration on a 2-D array using a multi-lag cross-correlation technique (Ivancevich et al. 2008, 2009). All of these adaptive imaging techniques suffer from limited spatial stability of the aberrator, in which correcting for a single aberrator restores spatial resolution and contrast only over a small sub-region of the image.
known as the isoplanatic patch (Dahl et al. 2005; Vignon et al. 2006).

Aberration correction techniques have been established in other fields including astronomy (Muller and Buffington 1974), electromagnetics (Steinberg 1981) and seismology (Taner et al. 1974), which have informed aberration correction in medical ultrasound. Approaches in astronomy, ultrasound and microscopy have used beacon signals similar to those in the current method (Andersen et al. 1997; Azucena et al. 2010; Flax and O’Donnell 1988; Haworth et al. 2008). However, the current technique is unique among techniques in other modalities in its use of reciprocity between two independent 3-D scans. One proposed solution for the isoplanatic patch in other fields is the use of multi-conjugate adaptive optics, in which multiple deformable mirrors are used to characterize multiple aberrating layers, where the number of deformable mirrors is equal to the number of thin aberrating layers (Johnston and Welsh 1994). This approach has been implemented to correct lens aberrations in optical imaging of the human retina (Bedgood et al. 2006; Dubinin et al. 2008) and atmospheric aberrations in the case of large ground-based telescopes (Beckers 1988; Marchetti et al. 2007). Such an approach is physically similar to the matrix representation of aberration developed in spatiotemporal inverse filtering techniques (Aubry et al. 2001; Tanter et al. 2001), in which the entire propagation operator must be acquired, with each row of this matrix corresponding to a different layer of distortion.

Despite the sensitivity challenges posed by 3-D ultrasound and the presence of the skull, our group has reported moderate success in 3-D transcranial imaging studies. Although we have reported the ability to image blood flow transcranially in three dimensions in some individuals (Lindsey and Smith 2013; Lindsey et al. 2011), we require microbubble contrast agent to achieve sensitivity levels that are diagnostically useful in a general population.

Recently, our group reported a technique for phase aberration correction using two 2-D arrays placed over opposing temporal acoustic windows capable of correcting multiple isoplanatic patches in a 3-D phased array scan (Lindsey and Smith 2013). The presence of two arrays allows us to sequentially transmit multiple steered wavefronts and receive them on the opposite side of the head after they have traveled unique propagation paths through the aberrating media (Fig. 2). These measurements are then used to apply unique delay update maps to different sub-regions of a 3-D phased array scan, correcting multiple isoplanatic patches and extending the benefits of phase aberration correction to an entire volume (Fig. 3). This technique builds on the investigations of Waag et al. into propagation path dependence of aberration, in which measurements made using multiple sets of transmit-receive aperture pairs are used to correct for path-dependent effects that cause the near-field phase screen model to break down (Astheimer et al. 2006; Tillett et al. 2010; Waag and Astheimer 2005).

In this article, we describe the first results of the human application of this phase aberration correction technique in a pilot study of five healthy volunteers with microbubble contrast enhancement.

METHODS

Scanning system

The study was performed using the Volumetrics Model 1 scanner (Volumetrics Medical Imaging, Durham, NC, USA), a real-time 3-D ultrasound system with 16:1 parallel receive processing (Smith et al. 1991; von Ramm et al. 1991). This system has 256 transmit channels and 256 shared transmit/receive channels. A 2-D phased array transducer on this system typically transmits 256 broadened beams in succession. For each transmit beam, 16 receive beams are formed from echoes arranged in a 4 × 4 pattern centered on the transmit beam. The transmit beam spacing is 4° in a typical 64° × 64° scan, enabling frame rates of up to 30 volumes/s.

To enable simultaneous real-time 3-D imaging with two 2-D arrays, the scanner’s channels and its 4096 image lines were split equally between two matrix arrays, enabling simultaneous acquisition of two 64° × 64° pyramidal volumes (Lindsey et al. 2011; Smith et al. 2009). Each matrix array has 128 transmit elements and 128 shared transmit/receive elements. For each transmit beam, 16 receive beams are formed from one of the two transducers. However, transmit beam separation has...
Isoplanatic patch lateral extent

- Single-IP correction
- Multi-IP correction

Fig. 3. Percentage brightness increase with lateral distance in transcranial aberration correction in a single human subject for a traditional phase aberration correction (black) and a multiple isoplanatic patch correction (blue). Although the brightness improvement decreases laterally when a single isoplanatic (IP) patch is assumed, brightness gains are maintained when multiple corrections are performed, as described in the caption to Figure 2.

now doubled in the elevation direction, so transmit beams in each $64^\circ \times 64^\circ$ volume are spaced at 4° in azimuth and 8° in elevation.

During in vivo scanning, four slices from the two probes are displayed simultaneously in real time: one azimuth and one elevation slice from each transducer, corresponding to coronal and transverse planes in transtemporal imaging (Fig. 4a). The operator uses a trackball control to select any four slices in either volume for display. All experiments were performed using commercial (Volumetrics) sparse 2-D arrays having inter-element separation of 0.35 × 0.35 mm and remapped by a custom printed circuit board to allow for dual simultaneous 3-D imaging (Lindsey et al. 2011). Each sparse matrix array has 128 elements with an aperture diameter of 6.6 mm, producing a −6-dB pulse-echo beamwidth of 5.5 mm at a depth of 70 mm (Smith et al. 2009); studies were performed with 3-D echo at 2.5 MHz and 3-D color Doppler at 1.8 MHz to maximize sensitivity for the system and transducer.

Human scanning protocol

Five healthy volunteers were scanned after providing informed consent according to a protocol approved by the Duke University institutional review board. The two matrix array probes were placed in a head frame (Fig. 4b) (Mark III, Spencer Technologies, Seattle, WA, USA), allowing an experienced sonographer (H.N.) to manipulate them and locate the subject's acoustic window. Once the desired field of view was attained, the probes were locked in place using custom attachments on the head frame. The subject was instructed to remain still for the duration of the study.

For each probe, five sequential pitch-catch measurements were made using transmitted beacon waves steered in five different directions: $(0^\circ, -15^\circ)$, $(0^\circ, 0^\circ)$, $(0^\circ, 15^\circ)$, $(15^\circ, 0^\circ)$, and $(15^\circ, 0^\circ)$. Update region (isoplanatic patch) size was assumed to be 32° in both azimuth and elevation, in line with published values for the skull isoplanatic patch (Ivancevich et al. 2009; Vignon et al. 2006). This assumption yields five update regions: a central $32^\circ \times 32^\circ$ patch and four side patches measuring either $32^\circ \times 16^\circ$ or $16^\circ \times 32^\circ$ (Fig. 2). This aberration correction approach has been previously described in greater detail (Lindsey and Smith 2013).

Briefly, single-channel radiofrequency data were acquired using a digitizing board (25 MHz, PDA14, Signatec, Corona, CA, USA) on a PC (Dell, Round Rock, TX, USA). These signals were filtered axially (FIR band-pass filter, 60% BW) and laterally (Dahl and Feehan 2008) (FIR lowpass, cutoff at 75% of spatial Nyquist), before removal of the steering component. Phase aberrations were estimated using a multi-lag least-squares estimation technique (Gauss et al. 2001; Liu and Waag 1994). This estimation algorithm is performed by computing the normalized cross-correlation between all element signals within a specified spatial lag (3 mm), and the resulting over-determined system was approximately solved using linear least squares, yielding five delay update maps, or versions of $\Delta_t(x,y)$, for each probe. These maps were passed back to the scanner via Ethernet connection, and transmit and receive delays were updated for all scanning modes. The entire computation and delay update process required approximately 3 min. Although a faster implementation could further improve this technique by minimizing effects of physiologic and patient motion, we successfully demonstrated correction (Lindsey and Smith 2013) because the transducer was stationary.
relative to the aberrator and the correction source was a coherent, spatially stationary signal rather than a diffuse source or moving scatterers. After the human study, the delay maps from each subject were analyzed to determine the root-mean-square amplitude and full width at half-maximum of the autocorrelation of each measured aberrator, measurements of aberration strength and spatial frequency content, respectively.

Once delays were updated, the subject was given an intravenous bolus injection of 10 μL/kg activated Definity (Lantheus Medical Imaging, North Billerica, MA, USA) followed by a 10-mL saline flush according to the Definity prescribing information. Aberration-corrected images were acquired in color flow mode. After the flow enhancement caused by Definity had dissipated, the scanner’s delays were returned to their default values (i.e., aberration correction was removed). A second bolus injection was administered per prescribing information, and control images were acquired. During microbubble enhancement, four corrected and four control acquisitions were saved. Each acquisition consisted of approximately 10–12 volumes in time at a frame rate of approximately 3 volumes/s. Three-dimensional Doppler settings included a four-cycle pulse and an ensemble length of 7. The Doppler pulse sequence followed that of Jensen (1996), in which echo and Doppler pulses are inter-leaved. The VMI on-screen display showed a mechanical index of 1.2 and a thermal index of 0.1. Because on-screen values assume a thermal index of 0.3 dB/cm/MHz (American Institute of Ultrasound in Medicine [AIUM]/National Electrical Manufacturers Association [NEMA] 1998) and actual attenuation is expected to be approximately 3 dB/cm/MHz for 3 mm of bone inside the window and 1 dB/cm/MHz for 7 cm of brain tissue, maximum in vitro attenuated peak pressures are expected to be approximately three times lower than indicated, ensuring subject tolerability for this study while also providing potential room for increasing the mechanical index in future studies. The real-time video display from the entire study—in which two orthogonal slices from each transducer are displayed simultaneously—was also recorded to a digital video recorder disk for later review.

For quantitative comparison, the magnitude of the 3-D color Doppler data of the control scans was analyzed offline (MATLAB, The Mathworks, Natick, MA, USA) by manually selecting a threshold for 3-D rendering that produced optimal display of signal and rejection of noise. This is analogous to adjusting the Doppler reject on the scanner. This same threshold was then applied to the corrected volumes and the change in the number of voxels above this threshold was recorded. This increase in Doppler magnitude is indicative of improvement in sensitivity caused by aberration correction, because when aberration is corrected in each isoplanar patch, the radiofrequency echo data are summed coherently, increasing echo SNR and producing a corresponding increase in the correlation coefficient (the Doppler magnitude) between beamformed echo acquisitions at successive pulse repetition intervals.

Mean variance of the Doppler data was also compared between the corrected and control cases. Variance is expected to decrease with correction as coherent signals overcome random noise (Ivancevich et al. 2008).

To display 3-D data, simultaneously acquired volumes were averaged in time and registered and fused into a single 3-D visualization as described previously (Lindsey et al. 2011, 2013). Video recordings of the real-time display were reviewed by an author experienced (B.L.) in viewing this type of bilateral 3-D scan, and detection of the following major vessels for each subject was examined: left and right middle cerebral arteries, left and right internal carotid arteries, anterior cerebral artery, left and right posterior cerebral arteries.

RESULTS

The anatomy of the vessels appeared to be accurate and was not greatly affected by aberration correction. Three-dimensional color Doppler data characteristics with and without aberration correction are summarized in Table 1. The number of Doppler voxels above a common threshold increased in all five subjects as a result of correcting aberration, with a mean increase of 33.9 ± 40.6%. The same rendering threshold was used for the aberrated (control) and corrected cases within each subject to allow direct comparison. However, the variance of the Doppler data decreased as a result of aberration correction in only two of five subjects. This will be examined in greater detail in the Discussion.

One subject exhibited a window failure, present in 8%–29% of the population (Baumgartner et al. 1997; Gahn et al. 2000; Hashimoto et al. 1992; Krejza et al. 2007; Lindsey et al. 2013; Marinoni et al. 1997; Postert et al. 1997; Seidel et al. 1995). In this subject, no landmarks were visible on the B-mode echo image, and only noise was visible with contrast enhancement, but without aberration correction (Fig. 5a). With aberration correction, blood flow in a single middle cerebral artery was visualized (Fig. 5b).

In evaluating the detectability of the major cerebral arteries (Table 2), contrast enhancement without aberration correction allowed visualization of 16 of 35 possible major arteries (45.7%). Contrast enhancement with aberration correction allowed visualization of 21 of 35 possible major arteries (60.0%). Ability to image blood flow in large cerebral arteries is an important indicator of any imaging system for use in stroke given that 68%
of ischemic strokes affect the anterior circulation—arteries supplied by the left and right internal carotid arteries—with 96% of these occlusions occurring in the middle cerebral arteries (Bogousslavsky et al. 1988).

Results for two subjects in whom aberration correction improved visualization are illustrated in Figures 6 and 7. In Figure 6, aberration correction enables visualization of both proximal middle cerebral arteries, which had not been possible without correction, and reveals the S-shaped structure of the carotid siphon in three dimensions. In Figure 7, aberration correction in a different subject illuminates the left internal carotid artery and produces more continuous flow in the right internal carotid artery. These improvements are discussed further in the Discussion.

Finally, in Figure 8, the entire circle of Willis is visualized both before and after correction in a fourth subject. Although in this subject all major arteries were visible without aberration correction, correction improved continuity of flow imaging by raising the SNR for Doppler imaging as described under Methods. In particular, in comparing Figure 8(c and d), correction can be seen to remove a registration error involving the anterior cerebral artery and to improve imaging of continuous flow in both middle cerebral arteries and one posterior cerebral artery.

In Figure 9, characteristics of the measured aberrators are presented for all five subjects. For each subject, five unique propagation paths through the aberrating skull (i.e., five isoplanatic patches) were measured on each side of the head. The strength of an aberrator is commonly expressed as the root-mean-square (RMS) amplitude of the aberration map, whereas the spatial frequency content of an aberrator is expressed as the full width at half-maximum (FWHM) of the autocorrelation of the aberration map. In Figure 9(a and b), the measured mean and standard deviation of the RMS aberration amplitude from five isoplanatic patch measurements are shown for the left and right sides of the head for each subject. A larger standard deviation indicates a greater variation in aberrator strength among different isoplanatic patches within a single subject. Measured FWHM correlation lengths are also provided for the left and right sides of the head for each subject (Fig. 9c and d). A larger standard deviation indicates greater variation in the maximum spatial frequency content among different isoplanatic patches within a single subject.

DISCUSSION

As stated in the Results, the aberration correction technique employed resulted in a mean increase in the number of Doppler voxels above the display threshold of 33.9%. Results in an initial human study with two patients did not use microbubble contrast agent and produced a mean increase in color flow voxels of 92%. The present study with contrast agent produced a Doppler signal with higher pre-correction SNR, providing a more accurate evaluation of the aberration correction technique described. Although all five subjects had an increase in voxels as a result of aberration correction, the variance of the increase in Doppler voxels was large because of the small number of patients scanned and the fact that in one subject (subject 1), the improvement was substantial (Fig. 6). In the results presented, the mean variance did not decrease in many cases, which could indicate either that the aberration correction failed or that this metric is unsuitable for measuring improvements caused by aberration correction in *in vivo* Doppler data. This
Table 2. Rates of detection of major cerebral arteries in five healthy volunteers

<table>
<thead>
<tr>
<th></th>
<th>Without aberration correction</th>
<th>With aberration correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ICA</td>
<td>2/5</td>
<td>4/5</td>
</tr>
<tr>
<td>Right ICA</td>
<td>3/5</td>
<td>4/5</td>
</tr>
<tr>
<td>Left MCA</td>
<td>3/5</td>
<td>5/5</td>
</tr>
<tr>
<td>Right MCA</td>
<td>4/5</td>
<td>4/5</td>
</tr>
<tr>
<td>ACA</td>
<td>2/5</td>
<td>2/5</td>
</tr>
<tr>
<td>Left PCA</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>Right PCA</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>Echo landmarks</td>
<td>4/5</td>
<td>4/5</td>
</tr>
</tbody>
</table>

ACA = anterior cerebral artery; ICA = internal carotid artery; MCA = middle cerebral artery; PCA = posterior cerebral artery.

Metric was used because it has previously been used (Ivancevich et al. 2006, 2008; Lindsey and Smith 2013) and because there is no standard metric for evaluating the effect of aberration correction on Doppler data. When this study and the previous study (Lindsey and Smith 2013) are combined, variance decreased in four of seven subjects. Presented images suggest that aberration correction did, in fact, improve image quality, so it is possible that correcting aberration may not always yield a decrease in Doppler variance because of either increasing amplitude of vessel wall echoes or an increased sensitivity to complex flow dynamics after correction. The effect of aberration correction on Doppler variance requires further study.

Although the magnitude of the Doppler data—used clinically in power Doppler and to weight or threshold color Doppler velocity data—exhibited the improvement expected with aberration correction, the variance in Doppler data decreased in only two of five subjects. Although variance was expected to decrease throughout the entire volume, it should be noted that within a single isoplanatic patch, correction quality is non-uniform and is expected to decrease moving from the center to the edge of an isoplanatic patch in the same way that improvement caused by correction diminished with lateral distance when only a single patch was assumed throughout an entire 3-D volume (Fig. 3). Doppler variance is also expected to vary temporally throughout the cardiac cycle. From a scanning system perspective, the ability to measure these spatial and temporal dependencies of the variance of the Doppler data is limited spatially by line separation and range gates and temporally by ensemble lengths. These factors cause ultrasound color flow data to be coarsely sampled relative to B-mode data, making color flow statistics more susceptible to and less able to measure variations at high spatial or temporal frequencies. Perhaps relatively low frame rates contribute to overall high variances in this particular imaging system. Further investigation with larger numbers of both inter- and intra-subject acquisitions could better elucidate this issue.

A scanner with higher parallelization (greater than 16:1) may also address these frame rate considerations. A more modern scanning system could also improve image quality and increase spatial sampling of aberrators, as some modern 3-D scanners have as many as 9000 active elements, whereas the scanner used in this study had only...
256 receive channels. Although access to channel data would still be required—although a difficult proposition given partial beamforming in probe handles (Cochrane et al. 2010; Savord and Solomon 2003)—such a scanner would also allow computation to be performed online and much more quickly.

In examining the aberration characteristics illustrated in Figure 9, we contribute to the small number of existing in vivo measurements of aberrator characteristics (Ivancevich et al. 2009; Lindsey and Smith 2013; Vignon et al. 2010). The RMS aberrator amplitudes presented here are within 35 to 60 ns, in close agreement with previously published values. The low mean FWHM correlation length for subject 4, the subject exhibiting window failure, may be explained by the fact that in the lower-SNR case associated with a poor acoustic window, uncorrelated noise produced a rapid decline in the autocorrelation of the aberration map. The relatively large error bars in Figure 9(c and d) suggest that the measurement of five different propagation paths through the skull yields measurements of aberrators with different spatial frequency content, further suggesting that unique aberrators (i.e., different isoplanatic patches) are being measured, which is the goal in this technique.

In comparing Table 1 and Figure 9, RMS aberration amplitude is consistent across all five subjects, so there is not a strong relationship between the strength of the aberrator and the improvement resulting from correction in the patients scanned. However, aberration correction yielded the smallest improvement in subject 5, the subject exhibiting the smallest RMS delay and the greatest discrepancy in FWHM correlation length between the two sides of the head. The presence of a high-spatial-frequency aberrator adjacent to the left transducer may have been difficult to overcome, especially given that the correction beacon for this side had to pass through the widely varying FWHM correlation lengths measured on the right side in this subject.

Another important effect of ultrasound propagation through the skull is amplitude distortion. Although previous studies have reported the benefit of correcting...
both amplitude and phase as a function of frequency (Aubry et al. 2001; Clement and Hynynen 2002; White et al. 2005; Wu and Fink 1991), we do not have a means of implementing amplitude correction because the scanning system used cannot transmit arbitrary waveforms on a per channel basis.

Aberration correction increased the ability to detect blood flow in the major cerebral arteries in 60% of cases after correction, compared with 46% of cases without correction. Given that color flow imaging is an inherently low-SNR technique which is further limited by the skull and 3-D ultrasound as discussed in the Introduction, this improvement is helpful toward achieving the end goal of developing a 3-D ultrasound imaging system sensitive enough to distinguish normal and abnormal flow in all individuals. The results in this study suggest that the most clinically helpful effect of this aberration correction technique lies in its ability to fill in vessels with missing segments (Figs. 5–7), though some dropout remains. Although the presence of this dropout of the Doppler signal in some of the presented images indicates that this goal has not yet been achieved, the aberration correction improvement presented here (∼2–3 dB) might be combined with our earlier efforts at improving sensitivity by reducing cable lengths (∼7 dB) (Lindsey et al. 2011) and reducing transducer frequency (∼3–8 dB, patient dependent) (Lindsey et al. 2013).

It should also be noted that the primary advantage of this aberration correction technique is that multiple isoplanatic patches are corrected, signifying structures are not lost at the edges of the volume as in other adaptive imaging techniques. This effect was observed in this study. For example, in Figure 8, the circle of Willis, despite its large spatial extent, remains entirely visible with aberration correction.

Although all data presented in this article have been Doppler magnitude (i.e., power Doppler) as we examined...
the question of sensitivity, quantitative measurement of cerebral blood flow velocities is most clinically useful. This measurement is most commonly performed using pulsed spectral Doppler, to which this aberration correction technique is directly applicable and should produce similar improvements. In general, the primary challenge with performing a 3-D spectral Doppler exam lies in positioning a small Doppler gate within a large 3-D volume using either only B-mode anatomy or a frame rate-reducing triplex mode.

If a non-invasive, real-time 3-D ultrasound-based technology could, through imaging and blood flow velocity measurements, both confirm the presence of an occlusion and rule out hemorrhage, physicians would possess all the information required to confidently form a treatment plan, including making an informed tPA decision. Given the time-sensitive nature of stroke and the corresponding urgency of this decision, the low cost and high portability of ultrasound systems allow them to potentially be used in the field or ambulance, decreasing time to tPA decision (Bowman 2010; Holscher et al. 2008; Schlachetzki et al. 2012). Although either a color Doppler approach, such as described here, or a perfusion imaging approach, as discussed in the Introduction, may detect the presence of a clot, recent progress at detecting hemorrhage with ultrasound is encouraging for solving the second and equally important part of this problem (Kern et al. 2008; Kukulska-Pawluczuk et al. 2012; Meyer-Wiethe et al. 2009).

In summary, we have assessed the feasibility of a phase aberration correction technique for bilateral 3-D transcranial ultrasound in a study of healthy volunteers using microbubble contrast agent. Aberration correction produced an increase in Doppler voxels of 33.9% and enabled detection of blood flow in 60% of arteries after correction, compared with 46% of arteries before correction. We hope that when combined with recent developments in portable ultrasound, microbubble-based imaging techniques and transducers, 3-D ultrasound might improve in quality and gain clinical acceptance for use in stroke diagnosis.
Acknowledgments—The authors thank Vivek Patel, Albert Chen and Marko Jakovljevic for assistance moving the scanner, and Sankalp Gokhale for administering IVs. This research was supported by Grants R01 HL089507 and T32 EB001040 from the National Institutes of Health.

REFERENCES

Krejza J, Swit J, Pawlik MA, Oszkinis G, Weigele J, Hurst RW, Kasner S. Suitability of temporal bone acoustic window:

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: Click on the Q link to find the query’s location in text. Please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Is short title OK?</td>
</tr>
<tr>
<td>Q2</td>
<td>Did you mean Lindsey et al. (2011) here? there is no Lindsey et al. (2009).</td>
</tr>
<tr>
<td>Q3</td>
<td>Please add Cochrane et al. 2010 and Savor and Solomon 2003 to reference list.</td>
</tr>
<tr>
<td>Q4</td>
<td>Do you mean Vignon et al. 20010 or 2006 here? there is no Vignon et al. 2008</td>
</tr>
<tr>
<td>Q5</td>
<td>Please add Wu and Fink 1991 to Reference list or delete citation.</td>
</tr>
<tr>
<td>Q6</td>
<td>Please confirm that the Beckers reference added to the list is the one you cited in text.</td>
</tr>
<tr>
<td>Q7</td>
<td>Please confirm that Dubinin reference added to list is the one you cited in text.</td>
</tr>
<tr>
<td>Q8</td>
<td>Please confirm that the Gauss reference added is the one you cited in text.</td>
</tr>
<tr>
<td>Q9</td>
<td>Please confirm that the Miller-Jones reference added to the list is the one you cited in text.</td>
</tr>
<tr>
<td>Q10</td>
<td>Please confirm that given names and surnames have been identified correctly.</td>
</tr>
</tbody>
</table>

Please check this box or indicate your approval if you have no corrections to make to the PDF file.

Thank you for your assistance.